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Abstract

This paper is an expansion of [11]. The discussions in this paper were inspired by a
college entrance practice exam from China. The investigations lead us to apply techno-
logical tools to explore the reections along circles. Firstly, we shall see if we choose the
incoming and outing light beams to be at a speci�c angle within a circle, we shall create
many nice geometric patterns. Secondly, we prove that the reections along the circle are
periodic if the reection angle is a rational degree. Thirdly, we replace the straight lines
for light beams by two symmetric curves with respect to the corresponding normal line
at the point on the circle, we will create nice patterns involving curves. Finally, we use
technological tools to explore interesting scenarios when reections are done along ellipses.

1 Introduction

In this paper, we use technological tools to explore and investigate reections of light beams or
billiards along a smooth curve. The problems discussed in this paper were inspired by a college
entrance practice problem (see Example 1 in Section 2) we found from China (see [5]). In short,
if we start from a point and starts bouncing against the curve (like a straight line light beam), we
would like to know when the bounces will come back to the initial starting point. In such cases,
we call the reections to be periodic. One can view the incoming rays (incidental rays) and the
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outgoing rays (reected rays) at any point of the curve as inverses with respective to the normal
line at the point on the curve. In Section 3, we discuss scenarios that will produce many nice
geometric patterns when we choose a proper angle between the incoming ray and the normal
vector at a point on the boundary of a circle, which we call it the reection angle. Inspired
by [4], where the reections along ellipses are periodic sometimes, we prove that the reections
are periodic for circles in Section 4 when the reection angles are rational degrees. In Section
5, we replace the incoming and outgoing rays from lines to curves, based on the formula 9
derived from [10]. As a result, we may create beautiful patterns involving curves. To encourage
beginners to appreciate how technological tools can inspire learning interesting mathematics,
in Section 6, we use technological tools to explore three known facts about reections along
ellipses.

2 A College Entrance Practice Problem From China

We present the following Example, which is originated from a college entrance practice problem
from China, see [5].

Example 1 We refer to the following �gure: A light beam starts from M(x0; 4) and follows the
direction parallel to the x� axis and hits y2 = 8x at P and reects and touches the horizontal
parabola at Q then the light beam touches the line x� y� 10 = 0 at the point N: Find x0 if the
�nal reection at N comes back to M:

Figure 1. Reections
between a horizontal
parabola and a line

First we note that the slope of the tangent line at a point on y2 = 8x (or y2 � 8x = 0)
satis�es 2y dy

dx
� 8 = 0; which implies dy

dx
= 4

y
: Since P = (x; 4) lies on y2� 8x = 0; we see x = 2:

We also note that dy
dx
= 1 at P , thus the angle between MP (parallel to the x � axis) and

the tangent line at P is �
4
: Since the normal vector nP is perpendicular to the tangent vector

at P; the incidental angle � = �
4
too. Thanks to the law of reection, we see PQ?MP and

dy
dx
at Q = (2;�4) is �1. Analogously, we see QN?NM: We plug y = �4 into the line of

x� y � 10 = 0 yields x0 = 6:
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We recall that if a straight line in the plane has the form of ax+by+c = 0 and if (u; v) 2 R2;
then the reected point (u0; v0) of (u; v) with respect to the line ax + by + c = 0 will have the
form of

u0 = u� 2a (au+ bv + c)
a2 + b2

;

v0 = v � 2b (au+ bv + c)
a2 + b2

: (1)

Figure 2. Reection of a
point with respect to a line

Alternatively, we may also call (u0; v0) to be the inverse of (u; v) with respect to the line
ax + by + c = 0: We recall a game called `Brick Breaker Arcade', which demonstrates simple
applications on light or billiards reections. Readers can recall some fun from the following
videos, see [1] or [2]. Now we consider the following scenario, which we can develop as a game
similar to 'Brick Breaker Arcade'.

Example 2 Given a circle of x2 + y2 = 4 and a point A = (0:385; 0:805) in the interior

of the curve. We start with the initial incidental ray of
�!
AB = (0:705 86; 0:871 32) ; where

B = (1:09086; 1:67632) is a point on the circle. Select the proper point D and the line L so that
the second reection followed by L will come back to the starting point A after two reections
along the circle.

Remark: A game easily linked to this problem can be stated as follows: We start with
a point A within a given circle and start a random reection along the circle, and we will be
looking for a precise place within the circle (point D) and a proper line (L) so that the reection
will come back to the point A after �nitely many reections.
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Figure 3. Billiard reections
within a circle and a secant

line

We outline how we approach Example 2 as follows:
Step 1. The line normal to the circle O at B = (x1; y1) in rectangular form is OB : y = 1:

5367x;
Step 2. We �nd the reection A with respect to OB; which we call it A0: The line equation

A0B is y = 1:954x� 0:4557. Next we �nd the point of intersection between A0B and the circle
to be C = (�0:7212729048;�1:865412929) :
Step 3. We note the normal line at C is y = 2:5863x: Next we �nd the reection of BC

with respective to the line OC to be y = 3:685x + 0:7926; which we call it L0: In other words,
we can view the incoming rays, BC, and the outgoing ray L0 at C of the circle, as inverses with
respective to the normal line at the point C on the circle.
Step 4. We �nd the intersection point between L0 and AB to beD = (�0:188 84; 0:09664 7).
Step 5. It su�ces to �nd the line of angle bisector, L00; between DB and CD at the point

D: This turns out to be y = �0:5117x; which is the green line in Figure 3.
Step 6. Finally, we �nd the desired line L000 (shown in pink in Figure 3), which is perpen-

dicular to L00 and passes through the point D; to be y = 1:954x+ 0:4657:

2.1 Explorations

To design an exam type of question, it is understandable that the problem cannot be too
complicated and the answer has to be simple too. However, we may make a problem more
realistic if technological tools are available to students. For example, one can explore the
following scenarios:

1. Repeat Example 2 by choosing a di�erent point A in the interior of the circle and di�erent
boundary point B on the circle. To experiment this interactively with Chinese Netpad
[8], click on [S1].
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2. Repeat Example 2 by starting a proper interior point A and the boundary point B: Now
we want to �nd the proper point D and the line L so that the sixth reection followed by
L will come back to the starting point A. To experiment this interactively with Chinese
Netpad [8], click on [S2].

3. Given point M (x0; y0) is �xed. Now we make the line ax + by + c = 0 to be movable.
Move the individual variable a; b or c; so that the �nal reection comes back to the point
M? To experiment this interactively with Chinese Netpad [8], click on [S3].

4. Suppose the given point M (x0; y0) and the line of ax + by + c = 0 are �xed. Make the
point P on the curve y2 = 8x be movable, after the reections of MP;PQ and QN , when
will the last reection NM come back to the point M? To experiment this interactively
with GeoGebra [6], click on [S4].

3 Geometric Patterns, Reections and Circles

We now turn to a natural question one would ask by connecting an interior point of a given
circle with another point that lies on the boundary of the circle. The question we ask is if such
initial starting ray will come back to the same starting point after �nitely many reections. In
other words, we ask if the reections will become periodic after �nitely many steps. We exclude
the trivial case where the �rst incoming light beam is the normal vector to a given point. At
present we focus on the case when the simple closed curve is a circle. We pick the starting point
from an interior point E of a circle with the trajectory that hits a point P1 on the boundary of
the circle. At the point P1; we de�ne the angle � of incidence as the angle between the inward
pointing normal vector at point P1 and the billiard trajectory EP1. Similarly, de�ne the angle
of reection (or simply reection angle) as the angle � between the normal vector at P1 and
the billiard trajectory P2P3. We see the angle of incidence � is same as the angle � of reection
(See Figure 4). Since � = �, we simply call such angle as reection angle in many places in
our paper with no confusion. We �rst analyze the angle � when the reections form a regular
polygon. With a dynamic geometry software (DGS) at hand, we start with a point E 2 R2
with a �xed direction v; which forms a �xed angle � with the normal vector at P1 on the circle.
We continue with the reection with the �xed angle � and ask if there is a positive integer n
so that the Pn = E: If such positive integer n exists, we call such reection to be periodic.
Before proving the reections along a circle is periodic when the incidental angle is rational,

we incorporate both dynamic geometry system (DGS), such as GeoGebra [6] and a computer
algebra system (CAS) such as Maple [7] to experiment and conjecture if the minimum number of
needed reections for making the reections periodic can be found. We use examples mentioned
in Section 3.1 as demonstrations. Accordingly, we need to specify in advance how two points
can be numerically considered as the same point. For example, we may set a pre-determined
numerical small tolerance to be � > 0; and for the points p = (x1; y1) and q = (x2; y2) 2 R2

satisfying kp� qk =
q
(x1 � x2)2 + (y1 � y2)2 < �; we say p and q are identical within �: We

later prove that the circle reections are periodic if the reection angle is a rational degree
in Theorem 8, and the minimum number of reections can be expressed explicitly once the

129



The Electronic Journal of Mathematics and Technology, Volume 14, Number 3, ISSN 1933-2823

reection angle is given in Corollary 9. In such case, the tolerance � > 0 will no longer be
needed.

Figure 4. Law of reection

3.1 Explorations On Reections Along Circles

Since we ask if a reection becomes periodic or not, it is natural we �rst consider the case
of a regular convex polygon that is inscribed in a circle. We recall that a convex polygon is
a simple polygon (not self-intersecting) in which no line segment between two points on the
boundary ever goes outside the polygon. A convex polygon is regular if each side is of equal
length; subsequently, each interior angle of a regular convex n-polygon has the measurement of�
1� 2

n

�
�180� =

�
1� 2

n

�
�. Therefore if the incidental angle for a reection, or simply reection

angle, is

� = 90�
�
1� 2

n

�
= 90�

�
n� 2
n

�
=
�

2

�
n� 2
n

�
; (2)

where n = 3; 4; ::: . Then the reections become periodic and follow the path of a regular
convex n-polygon.
For example, when n = 3 in (2) we see the reection angle � = 30�; then we create an

equilateral. In the following Figure 5, we consider the circle x2+y2 = 4 and start with the initial
incoming ray of EA; with the interior point E = (0:276886; 1:09285) and A = (1:45596; 1:3712) ;
which lies on the circle. We see the inclination angle � between EA and the normal line at A is
� = 30�: It follows that the third reection at the point C; will come back to the initial starting
point E: We call the number of reections, which make the reections periodic, to be 3: In the
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meantime, we see the reections form an equilateral triangle.

Figure 5. Reections and
an equilateral.

We note the following observations:

1. The reections become periodic or not does not depend on the location or the size of the
circle.

2. If we assume the initial ray starts with a point E 2 R2 and ends with the point P1 = (a; 0)
on the circle of x2 + y2 = a2: Then the incidental angle � 2

�
��
2
; �
2

�
: For simplicity, we

assume � 2
�
0; �

2

�
in our discussions.

Next, with technological tools, one can conjecture that there are other scenarios that will
make the reections along a circle periodic. For example, we now consider a regular star
polygon, that is a self-intersecting, equilateral equiangular polygon.

Example 3 Consider the incidental angle of � = 15� with E = (0; e) and P1 = (a; 0) on the
circle of x2 + y2 = a2: We show that such reections produce a regular (star) 12-polygons.
Incidentally, we produce the regular (convex) 12-polygon by connecting adjacent points on the
circle and also another inner regular (convex) 12-polygons.

Here, we use e = a tan � to �nd E: If a = 2; then E = (0; 0:5358983848). We depict the
produced regular (star) 12-polygons using [6] and [7] in the following Figures 6(a) and 6(b)
respectively. To experiment this interactively with GeoGebra [6], Maple [7] and Netpad [8] we
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refer readers to [S5], [S6] and [S7] respectively.

Figure 6(a) When � = 15� and
[6]

Figure 6(b) When � = 15� and
[7]

Now we turn to an interesting curve that if found after reections along a circle as follows:

De�nition 4 We call caustic curve to be the curve such that each billiard trajectory is tangent
to such a curve.

We see the caustic curve when � = 15� as we see in Figures 6(a) or 6(b) is a regular convex
12-gons. We use technological tools to experiment another example as follows:

Example 5 Consider the incidental angle of � = 5� and P1 = (2; 0); then we obtain a regular
star 36-polygons and E = (0; 0:1749773271) in this case. We depict the regular 36-polygons
using GeoGebra [6] and Maple [7] respectively in Figures 7(a) and 7(b) respectively. We remark
that the caustic curve in this case is a convex regular 36-polygons.

Figure 7(a) When � = 5� and
[6]

Figure 7(b) When � = 5�

and [7]
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At this point we rely on a CAS such as Maple ([7]) to conjecture the relationship between
the reection angle � and the number of regular polygon it may create if the reections become
periodic. We consider the following Examples.

Example 6 We set � = 10�
180

or 10� to be the reection angle; we want to �nd the point E and
the number points n needed to make the refection periodic.

With the help of Maple, we get a regular star 9- polygon. In this case, E = (0; 0:3526539614);
which shows the initial and �nal reections as follows in Figure 9(a) and 9(b).

Figure 9(a) Iniitial ray of
EP1 when � = 10

� with [7]
Figure 9(b) When � = 10�

and [7]

Example 7 If we start with E = (0; e), the point P1 = (2; 0): If we set � =
�
180
or 1�: Then (a)

�nd the number of points needed to make the reections periodic; (b) �nd the position of E to
see the reections periodic.

We may use Maple to compute the number points n needed to make the refection recursive,
we get a regular star 180�polygons. In this case, E = (0; 2 tan �) = (0; 0:03491012986); which
show the initial and �nal reections as follows in Figure 10(a) and Figure 10(b) respectively.
We shall see from Theorem 17 that the caustic curve in this case is a tiny regular convex
180�polygon, that circumscribes the circle centered at (0; 0) with radius sin 1�; which is di�cult
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to visualize in this case.

Figure 10(a) Initial ray when
� = 1�

Figure 10(b) Final
reection when � = 1�

3.2 Reections are periodic when the reection angle is rational

Now we proceed to prove that the reections along the circle shall become periodic if the
reection angle is rational.

Theorem 8 Let the starting point S be in the interior of circle C of x2 + y2 = 1 (see Figure
11). Let A0 be on the circle and � represent the reection angle of rational degrees

q
p
, which is

the angle between SA0 and the normal vector at A0: Then there exists positive integers m and
and n such that the reections are closed after n times of reections and m times of rotation for
A0 with respective to the origin. If in addition, gcd (m;n) = 1; then n represents the smallest
positive number for the reections become periodic.

Proof: We note that each point of the reection on the circle travels the arc length of
� � 2�: We are looking for the least positive integer m satisfying the equation of

n (� � 2�) = 2m�

for some positive integer m: We note that above equation is equivalent to �nding two positive
integers, m and n satisfying

� � 2�
2�

=
m

n
;

which means that after n times of reections with angle �; returning to A0; we have also gone
through m times of rotation for A0 with respect to the origin O: Now suppose gcd (m;n) = 1;
and if there exists another positive integer n0 < n for which the reections become periodic,
then there exists another positive integer m0 satisfying n0 (� � 2�) = 2m0�; which implies that

m

n
=
m0

n0
:

In other words, we have mn0 = nm0; which implies that mn0 is divisible by n: Since gcd(m;n) =
1; we see that n0 is divisible and n0 � n; which is a contradiction.
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Corollary 9 If the inclination angle � = q
p
in degree(s), and d = gcd(90p � q; 180p); then

n = 180p
d
is the minimum positive integer for making the reections periodic and m = 90p�q

d
is

the number of rotation for the point A0 with respective to the origin O:

Figure 11. Reections over a
circle

Proof: Suppose � = q
p
. The theorem follows immediately from the following observations.

n

 
� �

2q
p
�

180

!
= 2m�;

n�

90p
(90p� q) = 2m�;

90p� q
180p

=
m

n
: (3)

4 Discussions

Obviously, when � 2 (0; 90) ; we see n > 2m: In other words, the minimum reection number
is at least twice of those rotating number. On the other hand, if positive integers n and m are
given and are satisfying n > 2m; then we can calculate the � 2 (0; 90) with � = q

p
= 90�180m

n
:

Speci�cally, we note that the following

� : � 7�! 90� �
180

=
m

n

is a strictly decreasing function from those rationals of (0; 90) to those of
�
0; 1

2

�
: It is obvious

to see that

lim
�!0+

m

n
=
1

2
, and (4)

lim
�!90�

m

n
= 0:
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In view of the �rst equation of (4), it is easy to prove that

lim
�!0+

m =1 and lim
�!0+

n =1: (5)

Suppose lim�!0+ n = 1 is false, then there exists positive integers N and mk; nk; where k =
1; 2; :::; satisfying

m1

n1
<
m2

n2
< ::: <

mk

nk
< ::: <

1

2
; (6)

where
nk � N;mk < nk=2 < N=2; (7)

where k = 1; 2; ::: . It follows from the equation of (6) that
n
mk

nk

o1
k=1

is an in�nite set, and yet (7)

suggests it is a �nite set. Therefore, lim�!0+ n =1 and thus lim�!0+m = lim�!0+
�
m
n
� n
�
=1:

Analogously, we can apply the second equation of (4) to show that

lim
�!90�

n =1: (8)

In summary, the equations of (4), (5) and (8) suggests the followings:

1. When the reection rational angle � is approaching 0 or 90 degrees, the periodic number
of n is approaching in�nity.

2. When the reection rational angle � is approaching 0 degrees, the rotating number m is
approaching in�nity too and m is generally half of n:

3. The reections on circles form a convex polygon if and only if m = 1: In other words, the
starting point A0 goes around the circle only once.

4. Now if the reection angle � = q
p
is a rational, we may ask when m = 1:In view of the

equation of (3), m = 1 if and only if 180p is divisible by 90 � q: For example, we can
see from the following Table 1 that when � = 45; 54; 70 and 75 degrees, we see 180p is
divisible by 90� q:
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degree gons m/n degree gons m/n degree gons m/n
1 180 89/180 31 180 59/180 61 180 29/180
2 45 22/45 32 90 29/90 62 45 7/45
3 60 29/60 33 60 19/60 63 20 3/20
4 90 43/90 34 45 14/45 64 90 13/90
5 36 17/36 35 36 11/36 65 36 5/36
6 15 7/15 36 10 3/10 66 15 2/15
7 180 83/180 37 180 53/180 67 180 23/180
8 90 41/90 38 45 13/45 68 90 11/90
9 20 9/20 39 60 17/60 69 60 7/60
10 9 4/9 40 18 5/18 70 9 1/9
11 180 79/180 41 180 49/180 71 180 19/180
12 30 13/30 42 15 4/15 72 10 1/10
13 180 77/180 43 180 47/180 73 180 17/180
14 45 19/45 44 90 23/90 74 45 4/45
15 12 5/12 45 4 1/4 75 12 1/12
16 90 37/90 46 45 11/45 76 90 7/90
17 180 73/180 47 180 43/180 77 180 13/180
18 5 2/5 48 30 7/30 78 15 1/15
19 180 71/180 49 180 41/180 79 180 11/180
20 18 7/18 50 9 2/9 80 18 1/18
21 60 23/60 51 60 13/60 81 20 1/20
22 45 17/45 52 90 19/90 82 45 2/45
23 180 67/180 53 180 37/180 83 180 7/180
24 30 11/30 54 5 1/5 84 30 1/30
25 36 13/36 55 36 7/36 85 36 1/36
26 45 16/45 56 90 17/90 86 45 1/45
27 20 7/20 57 60 11/60 87 60 1/60
28 90 31/90 58 45 8/45 88 90 1/90
29 180 61/180 59 180 31/180 89 180 1/180
30 3 1/3 60 6 1/6 90 1 0

Table 1. When � is an integer degree

The following is an immediate observation from the preceding result:

Corollary 10 If the reection angle � is a rational number in degree(s), and we reduce 90��
180

to
be the lowest term m

n
: Then the denominator n is the minimum integer for the circle refections

become periodic and the numerator m is the rounding number. On the other hand, if the
reection angle is an irrational in degree(s), then the reections along a circle will not be
periodic.

Example 11 Assume � = q
p
= 7

2
; then we see that gcd (90 � 2� 7; 180 � 2) = 1; then the min-

imum number for the reections become periodic is n = 180p = 360: The rotating number is
m = 90 � 2� 7 = 173:
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Example 12 Assume � = 31:1 = 312
10
= q

p
; then we see gcd (90p� q; 180p) = gcd (90 � 10� 312; 180 � 10) =

12 and hence n = 180�10
12

= 150 and m = 90�10�312
12

= 49:

5 Replace Incoming And Outgoing Line Segments With

Symmetric Curves

Mathematically, an incoming light and an outgoing light is symmetric to a normal line at a
point on the circle. In other words, we may say that the outgoing line is the inverse of the
incoming line with respect to the normal vector at a given point. Now, suppose we replace the
incoming line by a smooth curve connecting pre-determined starting and terminating points,
and we would like to �nd the inverse of this smooth curve with respect to a normal vector at
a speci�ed point over a circle. Since circles are symmetric, we expect to create nice patterns of
graphs. According to [10], if [p(t); q(t)] is the inverse of [x(t); y(t)] with respective to the line
ax+ by + d = 0; where t 2 [t1; t2] ; then we have

�
p(t)
q(t)

�
=

1

a2 + b2

�
�a2 + b2 �2ab
�2ab a2 � b2

� �
x(t)� 0
y(t)� (�d

b
)

�
+

�
0
�d
b

�
(9)

=

�
cos 2� sin 2�
sin 2� � cos 2�

� �
x(t)� 0
y(t)� (�d

b
)

�
+

�
0
�d
b

�
:

We describe here how can replace the lines, represented by [x(t); y(t)] ; by curves with respective
to the proper normal vectors at appropriate points on the circle.
One easiest way to experiment this is drawing a regular convex polygon inscribed in a circle.

The vertices of those regular convex polygons serve the following purposes:

1. The normal vectors at those vertices, P1; P2; :::; Pn; will serve as lines of symmetry when
we apply the formula (9) in �nding the general inverse of [xi(ti); yi(ti)]; i = 1; 2; :::n; with
respect to those lines of symmetry.

2. The respective vertices, P1; P2; :::; Pn, also represent proper starting point and end point
for [xi(ti); yi(ti)]; i = 1; 2; :::n:

The next Example 15 shows if we start with an equilateral inscribed in a circle, how we can
apply our strategy to construct nice curves.

Example 13 Consider the equilateral MMNL is an inscribed in the circle x2 + y2 = 4; where
M = ([1:45596; 1:3712]) ; N = (0:45951;�1:9465) and L = (�1:91547; 0:575301) :We describe
how we can construct three ellipses that passes through M;N and L (shown in Figure 12). In
other words, we replace the equilateral line segments inscribed in a circle by smooth curves when
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connecting two consecutive points on the equilateral.

Figure 12. Replace an equilateral
with smooth curves

We describe how we construct three ellipses that passes through M;N and L as follows:
Step 1. We �nd the midpoint F of ML and construct a perpendicular line l1 to ML using

F as the perpendicular foot. We call the intersection between l1 and the circle to be P:
Step 2. We construct an ellipse using F as its center and FM and FP as its major and

minor axes.
Step 3. We proceed to construct the second and third ellipses analogously.
Step 4. It is easy to see that the portion of the ellipse passing through L; P and M and the

corresponding portion of the ellipse passing through M;Q and N are symmetric with respect
to the line MR:
Step 5. Similarly, the portion of the ellipse passing through M;Q and N is symmetric to

the portion of the ellipse passing through N;R and L are symmetric with respect to the line
RH:
Remark: Incidentally, we came up with a construction of the rose with three leaves, where

the angles between each leaf is 2�
3
:

In Example 16, we start with a square that is inscribed in a circle and we construct curves,
which serve as general inverses with respect to proper normal vectors at respective four vertices.

Example 14 Consider the square ABCD, where A =
�
�
p
2;
p
2
�
; B =

�p
2;
p
2
�
; C =�p

2;�
p
2
�
and D =

�
�
p
2;�

p
2
�
: In addition, E; I;G and K are midpoints of AB;BC;CD

and DA respectively (see Figure 13). Construct symmetric curves which uses the normal vec-
tors as the lines of symmetry at the respective vertices of the square ABCD that is inscribed in
a circle.

We describe how we construct the symmetric curves as follows:
Step 1. We start with a square ABCD that is inscribed in a given circle.
Step 2. We construct the perpendicular bisector of AB at E; where F is on the circle such

that EF ? AB:
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Step 3. We construct the ellipse, which is centered at E and uses EA and EF as its major
and minor axes respectively.
Step 4. We apply the same construction processes through the sides BC;CD and DA to

obtain the Figure 13 below.

Figure 13. Replace a squre by
smooth curves

Example 15 Consider the preceding Example 16 with the circle of x2+y2 = 4 and the squares
ABCD: We describe here how how we can replace the straight edges AB;BC;CD;DA by
smooth curves P1; P2; P3 and P4 respectively so that the following conditions are met: (a) P1
and P2 are symmetry with respective BD; (b) P2 and P3 are symmetric with respective CA; (c)
P3 and P4 are symmetric with respective to DA:

Step1. We refer to Figure 13. We let G be the midpoint of EF: We construct the parabola

P1 passing through A;G and B: We �nd P1(t) =

�
x(t)
y(t)

�
=

�
t�

1
4

p
2� 1

2

�
t2 + 2+

p
2

2

�
: Note

that the starting and terminating points for P1 are at A and B respectively. Therefore, we
choose t 2

�
�
p
2;
p
2
�
:

Step 2. To �nd P2; we apply the general inverse (p(t); q(t)) for a parametric equation
(x(t); y(t)) with respect to a line of ax + by + d = 0 (i.e., y = �a

b
x + �d

b
). In our case,

y = x; � = �
4
, x� y = 0; a = 1; b = �1; d = 0; so we write

P2(t) =

�
p1(t)
q1(t)

�
=

�
cos 2� sin 2�
sin 2� � cos 2�

� �
x(t)
y(t)

�
(10)

=

�
cos �

2
sin �

2

sin �
2
� cos �

2

� �
t�

1
4

p
2� 1

2

�
t2 + 2+

p
2

2

�
=

� �
1
4

p
2� 1

2

�
t2 + 1

2

p
2 + 1

t

�
; (11)
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where t 2
�
�
p
2;
p
2
�
:

Step 3. Next, �nd the parabola P3 that is symmetric to P2 with respect to y = �x: We
need to �nd the reection of

�
p1(t)
q1(t)

�
with respect to y = �x as follows, where � = ��

4
: Thus,

P3(t) =

�
p2(t)
q2(t)

�
=

�
cos 2� sin 2�
sin 2� � cos 2�

� �
p1(t)
q1(t)

�
=

�
cos ��

2
sin ��

2

sin ��
2

� cos ��
2

� � �
1
4

p
2� 1

2

�
t2 + 1

2

p
2 + 1

t

�
=

�
�t�

�1
4

p
2 + 1

2

�
t2 � 1

2

p
2� 1

�
;

where t 2
�
�
p
2;
p
2
�
:

Step 4. Finally, we �nd the reection of

�
p2(t)
q2(t)

�
with respect to y = x and � = �

4
as follows:

P4(t) =

�
p3(t)
q3(t)

�
=

�
cos 2� sin 2�
sin 2� � cos 2�

� �
p2(t)
q2(t)

�
=

�
cos �

2
sin �

2

sin �
2
� cos �

2

� �
�t�

�1
4

p
2 + 1

2

�
t2 � 1

2

p
2� 1

�
=

� �
�1
4

p
2 + 1

2

�
t2 � 1

2

p
2� 1

�t

�
;

where t 2
�
�
p
2;
p
2
�
: We depict the plot as follows:

Figure 14. Reections and
parametric equations

6 Further Explorations

We certainly can extend the reections over a circle to an ellipse as described in [4]. In which
we describe if a trajectory closes after a �nite number of bounces or the reections along ellipses
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become periodic. The history of Poncelet's Theorem is very interesting and there are many deep
mathematical results in connection with this theorem, including the conditions for periodicity
obtained by Cayley. We refer readers to [4] in exploring several interesting scenarios regarding
the elliptical billiards when technological tools are implemented. In what follows, we use a
DGS and CAS [8], which developed by a Chinese research group, to explore the following three
known facts which are proved by [9]. In the following demonstrations with technological tools,
we shall see that even though the proofs in [9] are evidently non-trivial; however, technological
tools can indeed be e�ectively implemented for making complex mathematical concepts more
accessible.
Exploration 1. If the trajectory crosses the foci, then the reected ray will pass the other

foci. It can also be shown theoretically that the trajectory of the billiard converges to the major
axis of the ellipse.

Example 16 Consider the ellipse of x
2

52
+ y2

32
= 1 with the foci of (�4; 0) and (4; 0) : Let P be

a point on the ellipse. We explore if the incidental ray EP passes one of the foci, then the
reected ray will pass the other foci. It can also be shown theoretically that the trajectory of the
billiard converges to the major axis of the ellipse.

Readers can explore this example through [S8] or https://www.netpad.net.cn/svg.html#posts/137109.

Figure 15(a). Reections when
incidental ray passes one foci.

Figure 15(b). Trajectory converges to
the major axis of the ellipse.

Exploration 2. If the incidental ray EP crosses the line segment between the two foci,
then we can show theoretically that the caustic forms a hyperbola.

Example 17 Consider the ellipse of x
2

52
+ y2

32
= 1 with the foci of (�4; 0) and (4; 0) : Let P be a

point on the ellipse. We explore if the incidental ray EP crosses the x� axis between the two
foci. Then we can show theoretically that the caustic forms a hyperbola.
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Readers can explore this example by modifying the example from [S9] or https://www.netpad.net.cn/svg.html#posts/158728.

Figure 16(a). Incidental ray crosses
between the two foci.

Figure 16(b). The caustic forms a
hyperbola.

Exploration 3. If the incidental ray EP does not cross the line segment between the two
foci, then it can be shown that every trajectory of the billiard is tangent to the ellipse which
shares the same foci with the ellipse. In other words, the trajectory forms a caustic which is
an ellipse confocal to the elliptical billiard table.

Example 18 Consider the ellipse of x2

4:52
+ y2

4:32
= 1 with their respective foci: Let P be a point

on the ellipse. We explore if the incidental ray EP does not intersect with the line segment
between the two foci of the ellipse. Then every trajectory of the billiard is tangent to the ellipse
which shares the same foci with the ellipse. In other words, the trajectory has a caustic which
is an ellipse confocal to the elliptical billiard table.

Readers can explore this example by modifying the example from [S10] or https://www.netpad.net.cn/svg.html#posts/137109.

Figure 17(a) Incidental ray does
not intersect the line segment

containing two foci.

Figure 17(b). A caustic
confocal to the elliptical

billiard table

Remark: By looking at the Figure 17(b) alone, although the ellipse is close to a circle, one
can �rmly detect that the reections are not along a circle since its caustic forms an ellipse
instead of a circle.
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7 Conclusions

Typically students are allocated no more than 10 minutes to solve one problem in a Gaokao
(College Entrance Exam) in China. Under such circumstances, it is not hard to imagine that
many students may decide to give up to solving challenging problems. It is clear that techno-
logical tools can provide us with crucial intuition before we attempt more rigorous analytical
solutions. Here we have gained geometric intuitions while using a DGS. In the meantime, we
use the computer algebra system (CAS) for verifying that our analytical solutions are consis-
tent with our initial intuitions. In this paper, we started with a simple reection problem from
Gaokao and investigated several scenarios using technological tools. The complexity level of
the problems we posed vary from the simple to the di�cult. With the interactive activities pre-
sented at the Supplementary Electronic Materials, we have made learning mathematics to be
fun, accessible and yet challenging. Activities presented in this paper de�nitely are accessible
to those teachers' training programs.
We hope that when mathematics is made more accessible to students, it is possible more

students will be inspired to investigate problems ranging from the simple to the more challeng-
ing. We do not expect that exam-oriented curricula will change in the short term. However,
encouraging a greater interest in mathematics for students, and in particular providing them
with the technological tools to solve challenging and intricate problems beyond the reach of
pencil-and-paper, is an important task for many educators and researchers.
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9 Supplementary Electronic Materials

[S1] Netpad worksheet for Section 2.1 number 1: https://www.netpad.net.cn/svg.html#posts/152541.

[S2] Netpad worksheet for Section 2.1 number 2: https://www.netpad.net.cn/svg.html#posts/153482.

[S3] Netpad worksheet for Section 2.1 number 3: https://www.netpad.net.cn/svg.html#posts/142435.

[S4] GeoGebra worksheet for Section 2.1 number 4.

[S5] GeoGebra worksheet for � = 15�.

[S6] Maple worksheet for � = 15�.

[S7] Netpad worksheet for � = 15�: https://www.netpad.net.cn/svg.html#posts/159437.

[S8] Netpad worksheet for Example 16: https://www.netpad.net.cn/svg.html#posts/137109.

[S9] Netpad worksheet for Example 17: https://www.netpad.net.cn/svg.html#posts/158728.

[S10] Netpad worksheet for Example 18: https://www.netpad.net.cn/svg.html#posts/137109.
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